Rapid rate of tubulin dissociation from microtubules in the mitotic spindle in vivo measured by blocking polymerization with colchicine

نویسندگان

  • E D Salmon
  • M McKeel
  • T Hays
چکیده

At metaphase, the amount of tubulin assembled into spindle microtubules is relatively constant; the rate of tubulin association equals the rate of dissociation. To measure the intrinsic rate of dissociation, we microinjected high concentrations of colchicine, or its derivative colcemid, into sea urchin embryos at metaphase to bind the free tubulin, thereby rapidly blocking polymerization. The rate of microtubule disassembly was measured from a calibrated video signal by the change in birefringent retardation (BR). After an initial delay after injection of colchicine or colcemid at final intracellular concentrations of 0.1-3.0 mM, BR decreased rapidly and simultaneously throughout the central spindle and aster. Measured BR in the central half-spindle decreased exponentially to 10% of its initial value within a characteristic period of approximately 20 s; the rate constant, k = 0.11 +/- 0.023 s-1, and the corresponding half-time, t 1/2, of BR decay was approximately 6.5 +/- 1.1 s in this concentration range. Below 0.1 mM colchicine or colcemid, the rate at which BR decreased was concentration dependent. Electron micrographs showed that the rapid decrease in BR corresponded to the disappearance of nonkinetochore microtubules; kinetochore fiber microtubules were differentially stable. As a control, lumicolchicine, which does not bind to tubulin with high affinity, was shown to have no effect on spindle BR at intracellular concentrations of 0.5 mM. If colchicine and colcemid block only polymerization, then the initial rate of tubulin dissociation from nonkinetochore spindle microtubules is in the range of 180-992 dimers per second. This range of rates is based on k = 11% of the initial polymer per second and an estimate from electron micrographs that the average length of a half-spindle microtubule is 1-5.5 micron. Much slower rates of tubulin association are predicted from the characteristics of end-dependent microtubule assembly measured previously in vitro when the association rate constant is corrected for the lower rate of tubulin diffusion in the embryo cytoplasm. Various possibilities for this discrepancy are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of the Crocus Sativus L. Carotenoid, Crocin, on the Polymerization of Microtubules, in Vitro

Objective(s): Crocin, as the main carotenoid of saffron, has shown anti-tumor activity both in vitro and in vivo. Crocin might interact with cellular proteins and modulate their functions, but the exact target of this carotenoid and the other compounds of the saffron have not been discovered yet. Microtubular proteins, as one of the most important proteins inside the cells, have several functio...

متن کامل

Microinjection of fluorescent tubulin into dividing sea urchin cells

To follow the dynamics of microtubule (MT) assembly and disassembly during mitosis in living cells, tubulin has been covalently modified with the fluorochrome 5-(4,6-dichlorotriazin-2-yl)aminofluorescein and microinjected into fertilized eggs of the sea urchin Lytechinus variegatus. The changing distribution of the fluorescent protein probe is visualized in a fluorescence microscope coupled to ...

متن کامل

A microtubule dynamics reconstitutional convention

305 The Rockefeller University Press $30.00 J. Cell Biol. Vol. 215 No. 3 305–307 https://doi.org/10.1083/jcb.201610066 Microtubules are cytoskeletal structures that serve as tracks for motor-based intracellular transport and underlie the organization of biological apparatuses, including the mitotic spindle, cilia, and the phragmoplast. In vivo, microtubules are highly dynamic and interconvert b...

متن کامل

Kinetic analysis of mitotic spindle elongation in vitro.

Studies of mitotic spindle elongation in vitro using populations of diatom spindles visualized with immunofluorescence microscopy have shown that the two interdigitating half-spindles are driven apart by an ATP-dependent process that generates force in the zone of overlap between half-spindles. To characterize further the system responsible for spindle elongation, we observed spindle elongation...

متن کامل

IPP51, a chalcone acting as a microtubule inhibitor with in vivo antitumor activity against bladder carcinoma

We previously identified 1-(2,4-dimethoxyphenyl)-3-(1-methylindolyl) propenone (IPP51), a new chalcone derivative that is capable of inducing prometaphase arrest and subsequent apoptosis of bladder cancer cells. Here, we demonstrate that IPP51 selectively inhibits proliferation of tumor-derived cells versus normal non-tumor cells. IPP51 interfered with spindle formation and mitotic chromosome a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Cell Biology

دوره 99  شماره 

صفحات  -

تاریخ انتشار 1984